Fake image detection is the process of identifying and detecting fake or manipulated images using deep learning techniques.
In multimodal misinformation, deception usually arises not just from pixel-level manipulations in an image, but from the semantic and contextual claim jointly expressed by the image-text pair. Yet most deepfake detectors, engineered to detect pixel-level forgeries, do not account for claim-level meaning, despite their growing integration in automated fact-checking (AFC) pipelines. This raises a central scientific and practical question: Do pixel-level detectors contribute useful signal for verifying image-text claims, or do they instead introduce misleading authenticity priors that undermine evidence-based reasoning? We provide the first systematic analysis of deepfake detectors in the context of multimodal misinformation detection. Using two complementary benchmarks, MMFakeBench and DGM4, we evaluate: (1) state-of-the-art image-only deepfake detectors, (2) an evidence-driven fact-checking system that performs tool-guided retrieval via Monte Carlo Tree Search (MCTS) and engages in deliberative inference through Multi-Agent Debate (MAD), and (3) a hybrid fact-checking system that injects detector outputs as auxiliary evidence. Results across both benchmark datasets show that deepfake detectors offer limited standalone value, achieving F1 scores in the range of 0.26-0.53 on MMFakeBench and 0.33-0.49 on DGM4, and that incorporating their predictions into fact-checking pipelines consistently reduces performance by 0.04-0.08 F1 due to non-causal authenticity assumptions. In contrast, the evidence-centric fact-checking system achieves the highest performance, reaching F1 scores of approximately 0.81 on MMFakeBench and 0.55 on DGM4. Overall, our findings demonstrate that multimodal claim verification is driven primarily by semantic understanding and external evidence, and that pixel-level artifact signals do not reliably enhance reasoning over real-world image-text misinformation.
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
As generative models continue to evolve, detecting AI-generated images remains a critical challenge. While effective detection methods exist, they often lack formal interpretability and may rely on implicit assumptions about fake content, potentially limiting robustness to distributional shifts. In this work, we introduce a rigorous, statistically grounded framework for fake image detection that focuses on producing a probability score interpretable with respect to the real-image population. Our method leverages the strengths of multiple existing detectors by combining training-free statistics. We compute p-values over a range of test statistics and aggregate them using classical statistical ensembling to assess alignment with the unified real-image distribution. This framework is generic, flexible, and training-free, making it well-suited for robust fake image detection across diverse and evolving settings.
The rapid progress of generative models has enabled the creation of highly realistic synthetic images, raising concerns about authenticity and trust in digital media. Detecting such fake content reliably is an urgent challenge. While deep learning approaches dominate current literature, handcrafted features remain attractive for their interpretability, efficiency, and generalizability. In this paper, we conduct a systematic evaluation of handcrafted descriptors, including raw pixels, color histograms, Discrete Cosine Transform (DCT), Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM), and wavelet features, on the CIFAKE dataset of real versus synthetic images. Using 50,000 training and 10,000 test samples, we benchmark seven classifiers ranging from Logistic Regression to advanced gradient-boosted ensembles (LightGBM, XGBoost, CatBoost). Results demonstrate that LightGBM consistently outperforms alternatives, achieving PR-AUC 0.9879, ROC-AUC 0.9878, F1 0.9447, and a Brier score of 0.0414 with mixed features, representing strong gains in calibration and discrimination over simpler descriptors. Across three configurations (baseline, advanced, mixed), performance improves monotonically, confirming that combining diverse handcrafted features yields substantial benefit. These findings highlight the continued relevance of carefully engineered features and ensemble learning for detecting synthetic images, particularly in contexts where interpretability and computational efficiency are critical.
Generative models now produce imperceptible, fine-grained manipulated faces, posing significant privacy risks. However, existing AI-generated face datasets generally lack focus on samples with fine-grained regional manipulations. Furthermore, no researchers have yet studied the real impact of splice attacks, which occur between real and manipulated samples, on detectors. We refer to these as detector-evasive samples. Based on this, we introduce the DiffFace-Edit dataset, which has the following advantages: 1) It contains over two million AI-generated fake images. 2) It features edits across eight facial regions (e.g., eyes, nose) and includes a richer variety of editing combinations, such as single-region and multi-region edits. Additionally, we specifically analyze the impact of detector-evasive samples on detection models. We conduct a comprehensive analysis of the dataset and propose a cross-domain evaluation that combines IMDL methods. Dataset will be available at https://github.com/ywh1093/DiffFace-Edit.
In recent years, the rapid evolution of large vision-language models (LVLMs) has driven a paradigm shift in multimodal fake news detection (MFND), transforming it from traditional feature-engineering approaches to unified, end-to-end multimodal reasoning frameworks. Early methods primarily relied on shallow fusion techniques to capture correlations between text and images, but they struggled with high-level semantic understanding and complex cross-modal interactions. The emergence of LVLMs has fundamentally changed this landscape by enabling joint modeling of vision and language with powerful representation learning, thereby enhancing the ability to detect misinformation that leverages both textual narratives and visual content. Despite these advances, the field lacks a systematic survey that traces this transition and consolidates recent developments. To address this gap, this paper provides a comprehensive review of MFND through the lens of LVLMs. We first present a historical perspective, mapping the evolution from conventional multimodal detection pipelines to foundation model-driven paradigms. Next, we establish a structured taxonomy covering model architectures, datasets, and performance benchmarks. Furthermore, we analyze the remaining technical challenges, including interpretability, temporal reasoning, and domain generalization. Finally, we outline future research directions to guide the next stage of this paradigm shift. To the best of our knowledge, this is the first comprehensive survey to systematically document and analyze the transformative role of LVLMs in combating multimodal fake news. The summary of existing methods mentioned is in our Github: \href{https://github.com/Tan-YiLong/Overview-of-Fake-News-Detection}{https://github.com/Tan-YiLong/Overview-of-Fake-News-Detection}.
The advancements in the field of AI is increasingly giving rise to various threats. One of the most prominent of them is the synthesis and misuse of Deepfakes. To sustain trust in this digital age, detection and tagging of deepfakes is very necessary. In this paper, a novel architecture for Deepfake detection in images and videos is presented. The architecture uses cross attention between spatial and frequency domain features along with a blood detection module to classify an image as real or fake. This paper aims to develop a unified architecture and provide insights into each step. Though this approach we achieve results better than SOTA, specifically 99.80%, 99.88% AUC on FF++ and Celeb-DF upon using Swin Transformer and BERT and 99.55, 99.38 while using EfficientNet-B4 and BERT. The approach also generalizes very well achieving great cross dataset results as well.
The rapid advancement of photorealistic generative models has made it increasingly important to attribute the origin of synthetic content, moving beyond binary real or fake detection toward identifying the specific model that produced a given image. We study the problem of distinguishing outputs from a target generative model (e.g., OpenAI Dalle 3) from other sources, including real images and images generated by a wide range of alternative models. Using CLIP features and a simple linear classifier, shown to be effective in prior work, we establish a strong baseline for target generator attribution using only limited labeled data from the target model and a small number of known generators. However, this baseline struggles to generalize to harder, unseen, and newly released generators. To address this limitation, we propose a constrained optimization approach that leverages unlabeled wild data, consisting of images collected from the Internet that may include real images, outputs from unknown generators, or even samples from the target model itself. The proposed method encourages wild samples to be classified as non target while explicitly constraining performance on labeled data to remain high. Experimental results show that incorporating wild data substantially improves attribution performance on challenging unseen generators, demonstrating that unlabeled data from the wild can be effectively exploited to enhance AI generated content attribution in open world settings.
The rapid advancement of generative artificial intelligence has enabled the creation of highly realistic fake facial images, posing serious threats to personal privacy and the integrity of online information. Existing deepfake detection methods often rely on handcrafted forensic cues and complex architectures, achieving strong performance in intra-domain settings but suffering significant degradation when confronted with unseen forgery patterns. In this paper, we propose GenDF, a simple yet effective framework that transfers a powerful large-scale vision model to the deepfake detection task with a compact and neat network design. GenDF incorporates deepfake-specific representation learning to capture discriminative patterns between real and fake facial images, feature space redistribution to mitigate distribution mismatch, and a classification-invariant feature augmentation strategy to enhance generalization without introducing additional trainable parameters. Extensive experiments demonstrate that GenDF achieves state-of-the-art generalization performance in cross-domain and cross-manipulation settings while requiring only 0.28M trainable parameters, validating the effectiveness and efficiency of the proposed framework.
The rapid proliferation of online misinformation poses significant risks to public trust, policy, and safety, necessitating reliable automated fake news detection. Existing methods often struggle with multimodal content, domain generalization, and explainability. We propose AMPEND-LS, an agentic multi-persona evidence-grounded framework with LLM-SLM synergy for multimodal fake news detection. AMPEND-LS integrates textual, visual, and contextual signals through a structured reasoning pipeline powered by LLMs, augmented with reverse image search, knowledge graph paths, and persuasion strategy analysis. To improve reliability, we introduce a credibility fusion mechanism combining semantic similarity, domain trustworthiness, and temporal context, and a complementary SLM classifier to mitigate LLM uncertainty and hallucinations. Extensive experiments across three benchmark datasets demonstrate that AMPEND-LS consistently outperformed state-of-the-art baselines in accuracy, F1 score, and robustness. Qualitative case studies further highlight its transparent reasoning and resilience against evolving misinformation. This work advances the development of adaptive, explainable, and evidence-aware systems for safeguarding online information integrity.