Topic:Fake Image Detection
What is Fake Image Detection? Fake image detection is the process of identifying and detecting fake or manipulated images using deep learning techniques.
Papers and Code
Aug 20, 2025
Abstract:FakeHunter is a multimodal deepfake detection framework that combines memory-guided retrieval, chain-of-thought (Observation-Thought-Action) reasoning, and tool-augmented verification to provide accurate and interpretable video forensics. FakeHunter encodes visual content using CLIP and audio using CLAP, generating joint audio-visual embeddings that retrieve semantically similar real exemplars from a FAISS-indexed memory bank for contextual grounding. Guided by the retrieved context, the system iteratively reasons over evidence to localize manipulations and explain them. When confidence is low, it automatically invokes specialized tools-such as zoom-in image forensics or mel-spectrogram inspection-for fine-grained verification. Built on Qwen2.5-Omni-7B, FakeHunter produces structured JSON verdicts that specify what was modified, where it occurs, and why it is judged fake. We also introduce X-AVFake, a benchmark comprising 5.7k+ manipulated and real videos (950+ min) annotated with manipulation type, region/entity, violated reasoning category, and free-form justification. On X-AVFake, FakeHunter achieves an accuracy of 34.75%, outperforming the vanilla Qwen2.5-Omni-7B by 16.87 percentage points and MiniCPM-2.6 by 25.56 percentage points. Ablation studies reveal that memory retrieval contributes a 7.75 percentage point gain, and tool-based inspection improves low-confidence cases to 46.50%. Despite its multi-stage design, the pipeline processes a 10-minute clip in 8 minutes on a single NVIDIA A800 (0.8x real-time) or 2 minutes on four GPUs (0.2x), demonstrating practical deployability.
Via

Aug 17, 2025
Abstract:With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.
* 10 pages, 5 figures
Via

Aug 06, 2025
Abstract:The rapid advancement of AI-generation models has enabled the creation of hyperrealistic imagery, posing ethical risks through widespread misinformation. Current deepfake detection methods, categorized as face specific detectors or general AI-generated detectors, lack transparency by framing detection as a classification task without explaining decisions. While several LLM-based approaches offer explainability, they suffer from coarse-grained analyses and dependency on labor-intensive annotations. This paper introduces RAIDX (Retrieval-Augmented Image Deepfake Detection and Explainability), a novel deepfake detection framework integrating Retrieval-Augmented Generation (RAG) and Group Relative Policy Optimization (GRPO) to enhance detection accuracy and decision explainability. Specifically, RAIDX leverages RAG to incorporate external knowledge for improved detection accuracy and employs GRPO to autonomously generate fine-grained textual explanations and saliency maps, eliminating the need for extensive manual annotations. Experiments on multiple benchmarks demonstrate RAIDX's effectiveness in identifying real or fake, and providing interpretable rationales in both textual descriptions and saliency maps, achieving state-of-the-art detection performance while advancing transparency in deepfake identification. RAIDX represents the first unified framework to synergize RAG and GRPO, addressing critical gaps in accuracy and explainability. Our code and models will be publicly available.
Via

Aug 01, 2025
Abstract:Generative models achieve remarkable results in multiple data domains, including images and texts, among other examples. Unfortunately, malicious users exploit synthetic media for spreading misinformation and disseminating deepfakes. Consequently, the need for robust and stable fake detectors is pressing, especially when new generative models appear everyday. While the majority of existing work train classifiers that discriminate between real and fake information, such tools typically generalize only within the same family of generators and data modalities, yielding poor results on other generative classes and data domains. Towards a universal classifier, we propose the use of large pre-trained multi-modal models for the detection of generative content. Effectively, we show that the latent code of these models naturally captures information discriminating real from fake. Building on this observation, we demonstrate that linear classifiers trained on these features can achieve state-of-the-art results across various modalities, while remaining computationally efficient, fast to train, and effective even in few-shot settings. Our work primarily focuses on fake detection in audio and images, achieving performance that surpasses or matches that of strong baseline methods.
Via

Jul 23, 2025
Abstract:Image Quality Assessment (IQA) models are employed in many practical image and video processing pipelines to reduce storage, minimize transmission costs, and improve the Quality of Experience (QoE) of millions of viewers. These models are sensitive to a diverse range of image distortions and can accurately predict image quality as judged by human viewers. Recent advancements in generative models have resulted in a significant influx of "GenAI" content on the internet. Existing methods for detecting GenAI content have progressed significantly with improved generalization performance on images from unseen generative models. Here, we leverage the capabilities of existing IQA models, which effectively capture the manifold of real images within a bandpass statistical space, to distinguish between real and AI-generated images. We investigate the generalization ability of these perceptual classifiers to the task of GenAI image detection and evaluate their robustness against various image degradations. Our results show that a two-layer network trained on the feature space of IQA models demonstrates state-of-the-art performance in detecting fake images across generative models, while maintaining significant robustness against image degradations.
* 8 pages, 6 figures, 3 tables, ICCV VQualA Workshop 2025
Via

Jul 17, 2025
Abstract:Previous studies on multimodal fake news detection mainly focus on the alignment and integration of cross-modal features, as well as the application of text-image consistency. However, they overlook the semantic enhancement effects of large multimodal models and pay little attention to the emotional features of news. In addition, people find that fake news is more inclined to contain negative emotions than real ones. Therefore, we propose a novel Semantic Enhancement and Emotional Reasoning (SEER) Network for multimodal fake news detection. We generate summarized captions for image semantic understanding and utilize the products of large multimodal models for semantic enhancement. Inspired by the perceived relationship between news authenticity and emotional tendencies, we propose an expert emotional reasoning module that simulates real-life scenarios to optimize emotional features and infer the authenticity of news. Extensive experiments on two real-world datasets demonstrate the superiority of our SEER over state-of-the-art baselines.
* Accepted by SMC 2025
Via

Jun 25, 2025
Abstract:The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.
Via

May 28, 2025
Abstract:Rapid advances in Artificial Intelligence Generated Images (AIGI) have facilitated malicious use, such as forgery and misinformation. Therefore, numerous methods have been proposed to detect fake images. Although such detectors have been proven to be universally vulnerable to adversarial attacks, defenses in this field are scarce. In this paper, we first identify that adversarial training (AT), widely regarded as the most effective defense, suffers from performance collapse in AIGI detection. Through an information-theoretic lens, we further attribute the cause of collapse to feature entanglement, which disrupts the preservation of feature-label mutual information. Instead, standard detectors show clear feature separation. Motivated by this difference, we propose Training-free Robust Detection via Information-theoretic Measures (TRIM), the first training-free adversarial defense for AIGI detection. TRIM builds on standard detectors and quantifies feature shifts using prediction entropy and KL divergence. Extensive experiments across multiple datasets and attacks validate the superiority of our TRIM, e.g., outperforming the state-of-the-art defense by 33.88% (28.91%) on ProGAN (GenImage), while well maintaining original accuracy.
Via

May 16, 2025
Abstract:The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
* Technical report. Code available at:
https://github.com/scu-zjz/ForensicHub
Via

Jun 06, 2025
Abstract:Deepfake detection has gained significant attention across audio, text, and image modalities, with high accuracy in distinguishing real from fake. However, identifying the exact source--such as the system or model behind a deepfake--remains a less studied problem. In this paper, we take a significant step forward in audio deepfake model attribution or source tracing by proposing a training-free, green AI approach based entirely on k-Nearest Neighbors (kNN). Leveraging a pre-trained self-supervised learning (SSL) model, we show that grouping samples from the same generator is straightforward--we obtain an 0.93 F1-score across five deepfake datasets. The method also demonstrates strong out-of-domain (OOD) detection, effectively identifying samples from unseen models at an F1-score of 0.84. We further analyse these results in a multi-dimensional approach and provide additional insights. All code and data protocols used in this work are available in our open repository: https://github.com/adrianastan/tada/.
* Accepted at Interspeech 2025
Via
